History and Hermeneutics for Mathematics Education
Storia
ed Ermeneutica per la Didattica della Matematica
Trigonometria by Cavalieri (1643)
La Trigonometria di Cavalieri
(1643)
Cavalieri, B. (1643), Trigonometria
plana, et sphaerica, linearis, & logarithmica, Benatij, Bologna
CAVALIERI Bonaventura Francesco (1598?-1647)
Index
Definitionum, Axiomatum & Problematum, quae in utraque Trigonometria
continentur.
In
Trigonometria Plana.
Definitiones,
ac Principia universae Trigonometriae communia (p. 1).
Considerationes,
& operationes quaedam, praecipuè circa Regulam Trium, tam per Lineas, quam
per Logarithmos exercendam, summè adnotandae (p. 3).
Problema 1. Dati arcus, vel anguli Sinum, Tan. Sec.
&c. vel Log. Mes. &c. è Canone extrahere (p. 7).
Problema 2. Dati Sinus, vl Tan. &c. seu Log.
Mes. &c. arcum, aut angulum in eodem Canone invenire (p. 8).
Problema 3. Dati numeri absoluti Logarithmorum è
Chiliade excerpere (p. 8).
Problema 4. Dati Logarithmi Numerum absolutum in
eadem Chiliade invenire (p. 10).
Problema 5. Regulam Trium absolvere (p. 10).
Axioma primum
Planorum Lineare (p. 12).
Problema 6. In quocunq: Triangulo rectangulo, datis
angulis, laterum proportiones manifestare (p. 13).
Problema 7. In quocunq: Triangulo rectangulo, dato
praeter angulos unico latere in quavis supposita mensura, in eadem reliqua duo
ignota latera nota reddere (p. 14).
Problema 8. In quocunq: Triangulo rectangulo, datis
duobus quibuscunq: lateribus in quavis mensura, angulos, & subinde tertium
latus in eadem mensura notificare (p. 15).
Axioma secundum
Planorum Lineare (p. 17).
Problema 9. In Triangulis planis universis, datis
duobus cruribus, & angulo uni eorum opposito, ac data specie anguli reliquo
datorum oppositi, hunc notum reddere, necnon angulum verticalem, & basim
(p. 17).
Problema 10. In Triangulis planis universis, datis
duobus angulis, & crure uni eorum opposito, reliqua notificare (p. 18).
Axioma tertium
Planorum Lineare (p. 18).
Problema 11. In Triangulis planis universis, datis
duobus cruribus, & angulo verticali, angulos ad basim patefacere, &
subinde etiam ipsam basim (p. 19).
Axioma quartum
Planorum Lineare (p. 20).
Problema 12. In Triangulis planis universis, datis
duobus cruribus, & angulo verticali, basim absq: angulorum eidem
adiacentium notitia, invenire (p. 20).
Axioma quintum
Planorum Lineare (p. 21).
Problema 13. In Triangulis planis universis, datis tribus lateribus,
angulos patefacere (p. 21).
Problema 14. In Triangulis planis universis, datis tribus lateribus,
absq: reductione ad rectangula notificare (p. 22).
Problema 15. Omnia de Triangulis obliquangulis praecedentia Problemata
per reductionem ad rectangula absolvere: hoc est per solum Axioma primum (p.
23).
Axioma primum Planorum Logarithmicum (p. 24).
Axioma secundum Planorum Logarithmicum (p. 25).
Axioma tertium Planorum Logarithmicum (p. 25).
Problema 16. Omnia pro triangulis planis rectangulis,
& obliquangulis praecedentia Problemata tantum per regulam, & circinum
absolvere (p. 26).
In
Trigonometria Sphaerica.
Definitiones,
ac Principia (p. 29).
Axioma primum Lineare, Triangulis sphaericis rectangulis inserviens (p.
32).
Problema 1. In triangulis sphaericis rectangulis, datis, ultra
angulum rectum, duobus quibuscunque; reliqua patefacere (p. 32).
Axioma secundum sphaericorum Lineare, & Logarithmicum pro Rectangulis
(p. 33).
Axioma tertium sphaericorum Lineare, & Logarithmicum; ac tam rectangulis
quam obliquangulis commune (p. 35).
Problema 2. In triangulis sphaericis obliquangulis,
datis duobus cruribus, & angulo uni opposito, nota in super specie anguli
reliquo cruri oppositi (cum hic opponitur cruri, quod est propinquius
quadranti) reliqua patefacere (p. 36).
Problema 3. In ijsdem, datis duobus angulis, &
crure uni eorum opposito, nota in super specie cruris reliquo datorum oppositi
(cum hoc opponitur angulo, qui est propior quadranti) reliqua patefacere (p.
37).
Axioma quartum
sphaericorum Lineare (p. 37).
Problema 4. In triangulis sphaericis obliquangulis,
datis cruribus, cum angulo certicali, basim invenire (p. 39).
Problema 5. In triangulis sphaericis obliquangulis,
datis cruribus, cum angulo certicali, reliquos angulos invenire (p. 41).
Problema 6. In triangulis sphaericis obliquangulis,
data basi, cum duobus angulis adiacentibus, angulum verticalem notum facere (p.
43).
Problema 7. In
triangulis sphaericis obliquangulis, data base, cum duobus angulis eidem
adiacentibus; utrumvis crurum invenire (p. 46).
Problema 8. In triangulis sphaericis obliquangulis, datis tribus
lateribus, seu datis cruribus, & basi, angulum verticalem invenire (p. 47).
Problema 9. In triangulis sphaericis obliquangulis, datis tribus
angulis, seu angulo verticali, & duobus basi adiacentibus: ipsam basim
invenire (p. 52).
Problema 10. Rationem reddere illius modi inveniendi ad datam Poli
elevationem Circulum positionis Significatoris, extra angulos Figurae caelstis
constituti; quem attuli in Appendice Praxis Astrologica pro Directionibus
conficiendis Cap 4 (p. 54).
Applicatio praedictorum Circuli positionis inventioni (p. 56).
Epilogus Regularum universae Trigonometriae, tam per Lineas, quam per Logarithmos
(p. 60).
Figurae pro
utraq: Trigonometria in fine positae.
See moreover:
Si veda inoltre:
Anonimo (1695), Epitome
trigonometrica, Tipografia del Seminario, Padova.
Lacroix,
S.F. (1813), Trattato elementare di Trigonometria rettilinea e sferica ed
applicazione dell’Algebra alla Geometria, Piatti, Firenze.
Piola,
G. (1844), Elogio
di Bonaventura Cavalieri, Bernardoni, Milano.
Syllogismos.it
History and Hermeneutics for Mathematics Education
(Giorgio T. Bagni, Editor)
Back to Library/Biblioteca
Back to
Syllogismos.it Main Page
Torna a Syllogismos.it
Pagina
Principale